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SUMMARY

A method is given for solving problems associated
Poisson equations which, in general, requires considerably fewer equa-
tions than the usual methods and which gives a convergent solution by
the method of successive approximations. For infinite regions, by this
method, the exact solution for the Dirichlet and Neumann problems can be
found by solving a system of equations with as many variables as there
are boundary points of the region. In addition, at each stage of the
iteration a best possible estimate of the error of the approxhate solu-

0 tion with respect to the exact solution of the difference equation for
the Dirichlet problem is furnished, and, for the Neumann problem, a bound
for the error of the normal difference of the approximate solution is

. given.

IAPLACE

with Laplace and

INTRODUCTION

Certain problems in steady-state heat flow, gas dynamics, both for
compressible and incmnpressible flows, plane torsion, and so forth can
be formulated as problems associated with the Laplace or Poisson equa-
tions in two dimensions. A frequently used method of approximating the
solution of the lkplace equation consists of replacing the region by
those points inside the region or on the boundary whose coordinates are
multiples of a fixed positive number, which is the mesh size, and
replacing the Laplace equation by the LapI-acedifference equation which
says that the value of the function at a point not on the boundary is
the mean of its values at the four neighboring points. This gives a
system of as many eq~tions as there are points inside the region. These
equations are solved by relaxation or iteration. The present report con-
cerns a formulation of a cmnplete system of equations for 8s many param-
eters as there are boundary points of the region where the desired func-
tion is a given linear function of these parameters for the Dirichlet

i and Neumann problems. For example, for a ‘~squareregion” containing,
say, 900 inner points, the number of variables and equations required
by the present method is 120. In any case, the larger the region the
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greater the utility of the method. This system of equations is given
in a form which allows the application of the method of successive approx-
imations, that is, each parameter is given by a linear function of all the P

parameters. In addition, the method of successive approximations applied
to this system of equations gives a solution which is known to converge at
least geometrically for all regions. This method is a finite-difference
analog of the integral-equationmethod of potential theory and is based on
some results of Courant, Friedrichs, and Le~ (ref. 1), McCrea and Whipple
(ref. 2), St&r (ref. 3), and Duffin (ref. 4).

The method has the disadvantage that the calculationsrequired for
setting up the system of simultaneous equations are much more complex
than in the usual methods. However, for some problems the method can be
used to reduce the number of variables so that the problem is within the
capacity of an automatic computing machine. Also, if more than one prob-
lem is to be solved for a given region this method offers a considerable
advantage.

—

Since, as is shown in this report, the Poisson difference equation
for a finite region can readily be reduced to the Iaplace equation by a
simple computation,the above remarks apply also to the I?oissondifference
equation. —

5

For nonlineaT equations which can be written in.a form such that the
Laplacian of the unknown function equals a given function whose arguments
are the unlmowm function, its derivatives, and the space variables, the

r

method of successive approxhations is Usedl each step consisting of the
solution of a Poisson difference equation as, for example, in the Rayleigh-
Jansen method.

Another advantage of the present method for the Dirichlet problem is
that at any stage a precise bound is automdxicaliyprovided for the error
of the previous approximation and a bound iS given for the corresponding
error for the Neumann problem of the normal derivative.

On the theoretical side the structure of the functions satisfying
the Laplace difference equation can be completely described in terms of
discrete potentials, and theorem& which extend Duffin’s results (ref. 4.)
can be derived.

In addition, the method of the present report can be applied to the
biharmonic difference equation, conformal mapping, and the theory of
monodiffric functions (ref. 5). An interpretationin electrical network
terms can be used to investigate electrical analog methods for solving
the Dirichlet and Neumann problems. Finally, the results of this paper
can be extended to n dimensions. a

In the present report the equations of the method till he derived
and formulated for computationalpurposes in the analysis section. Worked .

.

t,



NACA TN 4086 3

.

examples of the Dirichlet and Neumann methods are discussed. In appen-
dix A the proof of Greents first, second, and third identities is given.

●

In appendixes B and C the homogeneous integral-equation analogs are given
for the Neumann and Dirichlet problems, respectively. For those readers
who are not familiar with classical potential theory, of which the method
presented herein is an analog, a brief sketch is given in appendix D.

This investigation conducted at Case Institute of Technology was
sponsored by and carried out with the financial assistance of the National
Advisory Camnittee for “Aeronautics.

SYMBOLS

A (Ars) matrix

A’ (Ars’) matrti

%s = P(%8)

●

Ars1 = ~(ars‘)

“ %“ = q(~k”)

ark” = b“ - c“

()ars ‘ a77 - a7ti

a =b’ -c’rs’

B ()Brs matrix

Brs = 9 (brs)

b’ (brs’) matrix

()b“ = brs”

(brs) = S7 - B7’

● brs’ coordinates of rth point of graph of normal exterior se~nts

b “rs coordinates of rth point of graph of inner normal segments
.
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c matrix analogous to kernel of integral equation of potential
theory for Dirichlet problem

c“ matrix analogous to kernel of integral equation of potential
theory for Neumann problem

●

e- –

—

c“ matrix used in calculation of AiW, -q~@

c’ ~ x y matrix whose rows are lists of coordinates of boundary
points

c“ (y + v) x 7 matrix whose rows are lists of coordinates of
boundary points

D diagonal matrix whose diagonal entries give number of adjacent
inner normal points

G a region, that is, a set consisting of only inner and boundary
points

I set of inner points of G

17 7 x 7 identity matrix
n

L= L(P,Q) = CP(P- Q) t

M y x 1 matrix each of whose rows is dipole magnitude of inner
normal segments terminating on boundary point corresponding
to given row

m y x 1 matrix whose rows give mass on boundary point corre-
sponding to row for either a simple- or double-layer
potential

m’ 7 x 1 matrix whose rows give mass on normal point corre-
sponding to row (double-layer“potential)

P point or coordinates of point with integral-valuedcoordinates

( Pk>qk) coordinates of l@h boundary point of G

(Pk’)qk’) coordinates of kth inner normal point of G

(Pk’’’qk”)
coordinates of kth point of set of end points of exterior
normal segnents of G
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(Pk’” >qkn’) coordinates of kth point of set of points consisting of
inner normal and boundary points of G

.

Q

R

r

Si

Si‘

u

ii”’

(X,Y)

’77

9

Y

?’k

4U,AJ7, AJ7 factors of 7 x 1 matrix
.

point or coordinates of point with integral-valued coordinate

functional operator which for given point gives value of
function on adjacent inner points of G minus product of
number of such points and value of function on given point

distance from origin

ith inner normal se~ent

ith exterior normal segment

function defined on G which satisfies Iapl.acedifference
equation on inner points

y x 1 matrix whose elements are values of U on boundary
points

function defined on G

potential of simple- or double-layer distribution

y x 1 matrix of values of W on boundary points

E x 1 matrix of values of simple-layer potential W on end
points of exterior normal segments

(v + y) x 1 ~trix of values of W on normal inner and
boundary points

integral-valued coordinates

7 x y matrix where each column is list of coordinates of
boundary points

number of inner normal segments

number of boundary points

diagonal elements of ~
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5 difference operator

~k Y x 1 matrix of errors of kth approximation of U

n incidence matrix of graph of inner normal segments

?~ columns of q correspondingto normal inner points

v~ columns of T’)correspondingto boundary points of

7’

v“

e

.

of G

G

incidence matrix of graph of exterior normal segments

columns of ~’ correspondingto boundary points

angle in polar coordinates
—

magnitude of dipole for oriented unit segment

number of normal points

number of points in graph of exterior normal segments
?

matrix whose rows correspond to normal points and which indi-
cates boundary points adjacent to each normal point

1.

number of etierior normal segments

fundamental solution of Laplace difference equation

constant in bound for asymptotic expression of cp

U) Ner’s constant

Superscript:

k denotes kth

Subscripts:

k denotes kth

approximateon

approximation

r,s integral values

t transpose

of given quantity

of given quantity

r set of boundary points of G
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ANALYSIS

.

Geometrical Definitions

The set of points in the plane whose coordinates are integers will
be considered. Two points will be said to be adjacent if the distance
between them is unity. A sulset of points G till be called connected
if for any two points of G there is a path consisting of segents of
unit length connecting them in such a manner that the end points of these
se~nts are all in G. A point of G is an inner point if it is adja-
cent to four points of G. A point of G is a boundary point if it is
not an inner point.but is adjacent to an inner point. A point of G
is an inner normal point if it is an inner point and is adjacent to a
boundary point. A unit segment bounded by one inner normal point and
one boundary point is an inner normal segment of G. A set of points is
a region if it is connected and every point of the set is either an inner
or a boundary point. The symbol G will he used in the following dis-
cussion to denote a region. The coordinates of the inner points wKLL be
denoted by (x,y); the coordinates of the inner normal points, by (pk’,qk’)
where k

where k

. The

=1, 2, , . . 7; the coordinates of the
where k = 1, 2, . . . v; and the i~er

=1,2, . ..~.

matrices (% )~N = ik
()

and vr = ~rik

boundary points, by -
normal segments, by sk

are defined by

f-’ ‘f (p-k’) is an end point of si
)

?Nik = { } (1)

[
o if

(pk’~qk’)
is not an end point of si

J

[

1 if (pk,qk~ is &llend point Of S~ 1
Trik =

O if

-1

b 1 (2)

~, qk is not an end point of Si

It wi12 be assumed
consist of a finite set

.

that the boundary points of the regions consi~ered
of points.

.
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Discrete

Following the
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Potentials and Poisson Difference Equation

notation of St6hr (ref. 3), the fundamental solution
of the Laplace difference equation in two dimensions is written as

Q(x,y) = q(P)

where x and y =e integers and Q(P) has the following properties:

Cp(xjy)= P(IXI,IYI) =dlYl,lxl) (3)

{

1 if P is origin
R[q(P)] = .10 if P is not origin

(4)

where

R[q(x,y)] = cp(x+l,y)+cp(x- l,y) +q(x,y+l)+q(x,y- 1)-4q(x,y) (5)

Table I gives the values of CP(p,q). In addition, the folJ-o~ng asYmP- .

totic estimate is given by SWhr. There is a positive constant Q such
that

—

(6)

where

u.)= ( )Mm l+~+. ..+logenen
n+m

In the present paper this function will be used to define a function
of four variables. If P = ( ) and Q = (x2~y2) ‘henxl) Y1

p - Q = [Xl - ~),(Y1 - Y2)] and L(P,Q) IS defined bY

L(P,Q) =9(P -
[ ]

Q) = 9 (xl - X2),(YI - Y2 (7)
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.

By equations (3) and (4)

.

@,Q) =*1-x2)J(yl-y2q =~(lxl-wl~lyl- y21)=L(Q,p) ‘8)

and

[}

iif P=Q

~[@,Q)] =Rp[L(P, Q)] =

Oif P+Q

(9)

where ~ means that (x,y) in equation (5) istobe taken as (X2,Y2)

and Rp means that (x)y) in equation (5) is to be taken as (X1)Y1)”

If n arbitrary points (x1,Y1), (x2,Y2), . . . (~~Yn) are given

and if to the kth point (xk)yk~ there corresponds a real number mk

where k = 1, 2, . . . n, then the function

L1.

. w(P) =
1

m&pjQk) (lo)

k=l

.
where Qk = (xkJyk)will be called the potential of the mass distribut-

ion whose
where. By

where k

If
then the

for each

density iS m-k=
‘(xk~yk)

on the given points and zero else-

equation (9)

{}

~ifp=Qk

R[W(P)] =
O ifp+Qk

1,2, . ..n.

(u)

f(P) is a function defined on the inner points of a region
Poisson difference equation is

REV(P)] = f(P) (12)

inner point of the region, where V(P) maybe subject to addi-
tional conditions at boundary points and normal points. If U(P) iS

. defined by
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.

u(P) = v(P) - ~ f(Qk)L(p,Qk) (13) .

where the sum is to be taken over all inner
by equations (Id.)and (12),

R[U(P] =-O

points Ql, Q2, . . ., then

(14)

at alJ inner points. The conditions on U(P) at the boundary points, or
at the boundary and normal points, can be computed frcm the corresponding
conditions on V(P) and equation (13). In this way a problem for the
Poisson difference equation can be reduced to a problem for the LapI-ace
difference equation by a direct calculation provided that the region is
finite. For an infinite region the above reduction requires further
study relating to-the convergence of approximations for the sum in eqya-
tion (13).

Simple- and Double-Layer Potentials

A simple-layer potential is the potential of a mass distribution on -
the boundary points of a region and is given by

7

W(x,y) =W(P) =
I
k=l

~e??e mk is the mass on

.
7

the kth boundary point Qk = (pk~qk). ‘ince

there are no masses at the inner points, the simple-layer potential
satisfies the Iaplace difference equation on the inner points. It will
be seen later that the solution of the Neumann problem can be represented
by such a potential.

A dipole of magnitude p, is defined as a pair of masses situated
on the end points of a segment where one of the masses is p and the

—

other mass is -w. A double-layer potential is defined as the potential
due to a dipole distribution on the normal segments of a region. The
following convention will be observed: A dipole magnitude ~k iS asso-

ciated with the segment Sk(k =1, 2, . . . ~) and the mass of magnitude

pk associated with sk is to be considered as being on the boundary

point of the se~ent sk while the mass of magnitude -pk of this dipole

is to be considered as being on the normal point of the segment sk. It m

is a consequence of the definitions of ~N and ~ (eqs. (1) and(2)) ‘

that v
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P

where k = 1,

where k = 1,
ated tith the
respectively.

‘S’= ) llNrs&
r=l

2,. ..v and

“s=
f Irrsf%

r=l

I-1

(16)

(17)

2, . . . 7 and where ~ and ms’ are the msses associ-

dipole potentials at the boundary and normal points,

If mt’ =ml’, m2’, . . . rev’, mt =ml, m2j . . . ~, and

% =V1)M,2)*9* ~ where the subscript t means that the transpose

is to be taken, then the above equations can be written as

Hence the potential W(P) of a double layer is

W(x,y) =W(P)= ~ %’~[(=PkwY-%’jJ +$ %#J%iJ,(wl.kjl (~)
k=l k=l

This potential satisfies the LapI-acedifference equation at all inner
points which are not norml points; at nomnal points by equation (9),

@’k’%’)]‘%’ (Zll)

where k=l,2, . ..v. The double-layer potentials till be restricted
by the condition that se~ents with common boundary points have the same
dipole magnitudes. Thus, if the order of the kth boundary point is 7k

(i.e., the number of nomal segments on this boundary point is 7k), then

. the dipole magnitudes of each of the seggnentsis

defined by
(7k)-%k. ~t ~ be

—
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+ = m~r (22)

It may be noted that ~ is a diagonal matrix whose diagonal elements

are precisely the orders of the correspondingboundary points. Thus,
in matrix form, the above condition can be written

P = @#l (23)

and it will be assumed that all double-hyer potentials considered comply
with this condition. If both sides of equation (23) are multiplied by

~Nt and a is defined by

a = -?Nt?r

then, by equation (18),

of a

m’ = ‘lm-u+

The reason for this restriction is that
function U(P)” defined on G so that

u(P) = w(P)

R[U(P)] =0

(24)

(25)

it guarantees the existence

(26)

(27) _

.

for every inner point P belonging to G. To prove this assertion let
~ be defined by

fit = (Ul, U2, . . . -~7) (28)

and let U(P) = W(P) if P is an inner point and ‘(pk,qk) = Uk for
boundary points. Since W(P) satisfies the Laplace difference equgtion
at all nonnormal inner points it is only necessary to verify that U
can be determined so that equation (27) is satisfied on the normal poi@s.
By equations (21) and (27) a necessary and sufficient condition that U
can be determined so that equation (27) is satisfied is that the system
of equations

[
Rw(pk’,qk’) - ‘(??k’,qk’ )] =‘k’ (29)

“

where k = 1, 2, . . . v, have a solution. Since W and U have identi-
cal values at all inner points, equation (29) states that at each normal .
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inner point the
. points is equal

by

sum of
to the

13

the differences W - U at the adjace~t boundary
mass at the given normal point. If W is defined

‘it = (who ‘k’qo “ ● “ ‘F%)) (x)

then by the definition of a (eq. (24)), the system of equatiom (eq. (29))
can be written

IS(R- u) = m’ (31)

By equation (~) it fol.lom that

~-lm
E-fi=- (32)

is a solution of equation (31) which defines ~. This solution which
defines ~ and consequently U till be called the harmonic extension
of W on G.

Equation
v boundary of a

the classical

Hence,-byeq~tion (23)

P = -T@ - fj) (33)

(33) is the discrete analog of the discontinuity at the
double-layer potential of the classical theory, and, as in
theory, a double-layer potential till be used to solve the

Dirichlet problem.

Reduction of Dirichlet Problem to Integral-EquationAnalog

The Dirichlet problem for a bounded region consists of finding a
function U defined on a given region which satisfies the La.placedif-
ference equation on the inner points of the region and which assumes
arbitrary prescribed values on the boundary points.

Since by equations (18), (19), and (20) W(P) is a linear function
of p, then by-equation (30) fi is a linear function of p. In eqw-
tion (33) if U is taken as given by the prescribed values of U on the
boundary then this system of equations can be regarded as a system of
linear equations for y. If the system of equation (33) has a solution
for W, then m and m’ can be calculated by equations (18) and (19),
and W can be calculated by equation (20). If U(P) iS defined by the
condition that it equals W(P) at inner points and, on the boundary
points, coincides with the prescribed values of the Dirichlet problem,

. then U is the solution of the Dirichlet problem. This can be seen by
the following argument. If eqution (33) is multipliedby ~t on the

left, then equation (31) is a consequence of equation (24). This means.
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that U is the harmonic extension of W; that is, U satisfies the
Laplace difference eqpation on the inner points of G. Since by the
construction U assumes the prescribed values, U(P) is the desired
solution and, hence, W represents U on the inner points of G. Th~s
result may be fomnulated in the following way. For a given value of U,
if the system of equations (33) has a solution for K, then the double-
layer potential defined by p represents U on the inner points of G.

Since equation (33) is a system of 13 equations in the ~ unknowns
w) the e~stence and} in addition} the uniqueness Of the SOIUtiOn are
demonstrated if it can be shown that the correspondinghomogeneous system

v = -’P (34)

has only the trivial solution. It will be shown in appendix C that
equation (34) has only the trivial solution.

The discussion above applies also to an unbounded region if the
function U is required to be regular at infinity and to have the value
zero at infinity. The definition of regularity given in the appendix
corresponds to the definition of potential theory.

Solution of Integral-EquationAnslog

Dirichlet Problemby Iteration

for

Since the systems of equtions (32) and
system of equations (32) will be considered.

M = @n

then equation (32) can be written

M= -(i - 5)

(33) are equivalent, the
If M is definedby

(35)

—.

(36)

()By equations (20) and (30), if A = Ars and B = ()Brs then

~ =Am+Bm’

where, with r and s = 1, 2, . . . Y,

(Ars) = 9(~Pr - Psl,lqr - qsl)

and with r =1, 2, . . . 7 and s =lj 2j . ● ● ~~

(%s) ‘V(lpr ‘ps’l~lqr - %’1)

(37)

(38)

(39)

.

.

.

u

.*

.
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Eence, by equation (3)

15

fi=-cki

where

c = -(+ -,=)

!RUJ.S,equation (36) can be written

M =ti+cM

H M(k) (where k =0,1, 2,.. .} is defined by

M(O) = D (43)

M(k+l) = D + m(k) (44)

Then M(k) is the result of the kth iteration. It iS kllOwllthat this
sequence converges at least geanetricdly and an estimate of the rate of
convergence is being investigated.

If m(k) and m’(k) are definedby

~(k) =~M(k)

~,(k) =-d(k)

as in equations (24) and (25), and W(k)(x,y) is defined by

(4b)

(41)

(42)

Y

Wqx,y} =
~ [

mr(k)’?(x - Pr),(Y - ~r] + ~(%1) (k)‘[(x - ‘r’)~(y - ‘r’)]

r=l r=l
(45)

then the harmonic extension U(k) of W(k) is

U(k)(x,y) =W (k)(X,y)

for all inner points (x,y), and U(k) is taken as the kth
of U(x,y) on the inner points of G.

(46)

approximateon
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A best possi%le bound for the error of U(k) of the kth iteration

can be given in terms of the result for the (k + 1) iteration, ~(k+l)

and M(k). By equation (40),

~(k)
= -CM(k) (47)

‘(’) on the boundary points of the harmonic exten-and hence the values U

sion of R(k) are defined by the relation

Comparison of thfs equation with equation (M) yields

‘(k) = ~(k+l) - M(k)C-u

(48)

(49)

Since E - ~(k) is the difference of two solutions of the ’Laplacedif-

‘(k) also satisfies the Laplace differenceference equation for G, ~ - U
equation and by the maximum modulus principle must attain its maximum

on the boundary. Thus the element of ~ - ~(k) which i. greatest in
absolute value is a best possible bound for the error and this can be
computed from equation (49). Thus at each step of the iteration proc-
ess a bound can be computed for the error of the approximation provided -
in the preceding step.

Outline of Calculations for Dirichlet Problem

The calculation of the solution of the Dirichlet problem may be
divided into three stages. The first stage consists of the calculation
of the matrix C defined”by equation (41); the second stage concerns
the solution, or the approximation of the solution, of the system of
equation (42); and the final stage consists of computing the values of
the desired function on the inner points in the following way. By eqU-
tion (35).,equation (23) can be written

and by equations (18) and (19)

m’ = +4 (51)

.

.

m=?lw (52)
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.

Since M is ccmputed in the second stage, these eqxations give m and

‘v
m’ and by the use of equation (40), a formula for W(P) is obtained.
Since at inner points W and U coincide, the values of U on the
inner points are cmputed by this formula. The calculations of the sec-
ond stage may be carried out in several ways, among them the iteration
procedure defined by equations (43) and (44). It shouldbe noted that
any estimate of the error based upon equation (49) is equivalent to com-
puting one step of the iteration procedure.

The remainder of this section concerns the calculation of the
matrix C. It may be noted that C depends only on the geometry of the
given region and not on the values of’ ~ and, once computed, may be
used for any Dirichlet problem for this region.

By equation (41) C is calculated frcxn A, B, 0, and ~. By

equations (23) and (24), u and I& are calculated from ~ and ~

as defined by equations (1) and (2). As a preliminary step in the cal-
culation of A and B, two auxiliary matrices, a = ~s and b = br.
defined, with r and s = 1, 2, . . . 7, by

.

(1ars = ‘r - Psl,lqr - qsl) (53)

. and, with r=l,2,. . . yands=l,2, . ..v. by

are calculated.
other matrices

brs =

These two

%7’ ‘7V’

(1Pr - Ps’i)lqr - %’1) (54)

mtrices sre in turn calculated from three
and 13 defined by7V‘

( \(%.%)(+%) ● ● ● (w%)
~77 = (p2zq2)(F@2) ● ● ● (p22q2)

(56)
. . . . . . . . . . . .

where a77 is a 7 x 7 matrix, each column being a list of th~ coordi-
nates of the boundary points,

.
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where ~Visayxv
z

matrix each column again being a
coordina es of the boundary points, and

.

?.

(57)

list of the

(%)

where P is a 7 x v matrix each row of which is a list of theyv’
.

coordinates of the normal points. By equations (53) and (’34)
.—

a = a77 - a7fl (59)

b ‘Pyv - P7V’ (60)

and by equations (38) and (39),

Ars = Q (ars) (61)

Brs = CP(br~) (62)
.

The procedure of stage one may be summarized as follows: For the
given region, number the normal inner points from 1 to v, the boundary
points from 1 to 7, and the normal segments from 1 to ~. Then from

—

a list of the coordinates of the normal inner and boundary points write

‘he ‘trices %7 (eq. (56)), BYV (eq. (57)), ~d i37v’ (eq~ (a)),

and calculate a and b. By the use of table I for q, calculate A
and B by equations (61) and (62). The next step is to write ~

.

and ~N by equations (1) and (2) and calculate ~ and CT by equa-

tions (22) and (24). Alternatively ~ can be written by noting that
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.

it is a diagonal matrix such that the rth diagonal element is the number
of normal points adjacent to the rth boundary point (r = 1, 2, . . . ~),

t and a = ()aik my also be written directly by the following definitibn

which is equivalent to equation (24):

{

1 if (Pk>qk) is ad~ac~t to (Pi’>%’)

aik =
O H (pkjqk) is not adjacent to 1(PJAJ)(63)

From A, B, a, and ~, C is calculatedly equation (41). As a

partial check on the calculation of C it is proved in the appendix
that the sum of the elements in each row of C is zero.

The matrices for the region indicated in figure 1 are given in—
tables II and III.

sive

.

.

The successive
approximateions

Reduction of

approximations of M and the error of the succes-
of ~ are also given in table IV.

Neumann Problem to Integral-EquationAnalog

For a finite region the data of the Neumann problem are the set of
differences for each–normal se~nt of the value ~f a function at the
inner normal end point minus its value at the boundary end point, and the
Neumann problem consists of determining the value of the function, subject
to the Laplace difference equation, on the points of the region. For an
infinite region, the additional restriction is made that the function be
regular at infinity. As in classical potential theory it is a consequence
of the linearity of the I&place difference equation that the solution, if
it exists, is determined only up to a constant. For an infinite region,
the solution obtained by the method of this paper is the solution whose
value at infinity is zero and, for a finite region since a shple-layer
potential is used, the solution has the property that the potential repre-
senting this function on G is also defined on the complementary region
and has the value zero at infinity. It will also be shown in the appen-
dix that, as in classical potential theory, a necessary condition that
the Neumann problem have a solution is that the sum of the given differ-
ences be zero.

The following definitions will be required. Let

(&ii)t. (&UI, AU2, . . . 4U7) (64)
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where %Uk is the

segments on the kth
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.

sum of the differences of U for the inner normal

boundary point; that is, %Uk is the sum of the t
values of U on the normal points ad~acent to the kth boundary point
minus the product of the number of normal inner points adjacent to this
boundary point and the value of the function on this boundary point.
The segments for which at least one end point is a boundary point and
which are not inner normal segments of G will be called exterior nor-
mal se~nts of G. Let W be a function whose domain includes the end
points of the exterior normal segments and let

(Z@)t (= AeWl, AeW2, . . . AeW7
)

(65)

where AeWk is the sum of the values of W on those points which are

both end points of etierior normal segments and are ad~acent to the kth
boundary point minus the product of the nugiberof these adjacent points
and the value of W on the kth boumlary point. A formula for the cal-
culation of equations (64) and (65) will be given in the next section.
It may be remarked that in the notation of equation (64) the condition
on the sum of the differences is

7

I
4uk = o

k=l

and if W is a simple-layerpotential, by equations (15) and (11),

‘iwk ‘Aewk = ‘k

.

(66)

(67)

where k = 1, 2, . . . 7 and hwk is calculated in the sane way that

&uk iS calculated. Unless a statement is made to the contrary all

simple-layerpotentials

It will.be shown in the
Mm W(P) =0. Since a
p+.

ference equation on all

considered will be-subject to the condition

L %=0 (68)

k=l

appendix that this condition insures that
simple-la~r potential satisfies the Laplace dif-

inner points, it follows that W(P) is a solu-
tion of the Laplace difference equation for the given region. Hence AiW
represents the differences of a solution of the Laplace difference equa- r

tion on the inner normal se~ents andby e@ation (66)

-
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Yz4w~ = o
k=l

By equations (67), (68), and (69),

7’

I
~w~ = o (70)

k=l

For the representation of the solution of the-Neumann problem by a
simple-layer potential it will be assumed that AU is given. This can
be calculated from the usual form of the data, that is, from the differ-
ences prescribed for the inner normal segments. However, it willbe
shown in the appendix that on the inner points U is determined by 46
on~; tha~ is, if two distinct sets of differences are given so that
%U1 = 4U2, then U1 = U2 on the inner points up to a constant provided

21

(69)

U1 and
of G.

.
If

Neumann

.

U2 satisfy the

the simple-layer
problem then

Laplace difference equation on the inner points

potential

4C

and by equation (67)

4E +

where mt =ml, ~, . . . my and

W represents

= qu

~#=m

the solution of a given

(71)

(72)

mk is the coefficient of

~ & - Pk)(y- qk)j in the representation (eq. (15)) of W(x,y).

Conversely, if for given vaiues of %fi, there are y masses

ml, ~~ . . ● my so that the simple-layer potential of these masses

satisfies equation (72) then by equations (67) and (72)

(73)

and hence W computed frcm these ma~ses by equation (15) represents a
solution for the given values of AU. In addition, to show that eq~-

tion (72) has a unique solution for given values of AU when equa-
.

tion (66) is satisfied, since the number of equations coincides with the
number of unlamwns, it is only necessary to show that the corresponding

.
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homogeneous system has only the trivial solution. The proof of this
assertion will also be found in the appendix.

Solution of Integral Equation Analog of Neumann

Problem by

As a preliminary calculation a
derived. Assume that there are T

(Slf, Saf, ● , . sTf) and let these

assigned orientation. In addition,

Iteration

formula for equation (72) will be
exterior normal segments
segments have a fixed arbitrarily

assume that the end points of the
etieiior normal segments are denot&d by (pk’’,qkt~)where ‘k = 1, 2, . . . ~.

It till also be assumed that the numbering has been carried out so that
the boundary points are the first 7 points of this set, that is,

(pkjqk) = (pk’’~qk”)~th k=l~ 2} w ● ● 70 ~ A’ =(Ar-’) and m
and ~’ are defined by

~<= 9[%’, - Ps)Y(%” - %)] (74)

(76)

“where r = 1, 2, . . . ~, s = 1, 2, . . . y, and Wk” = W(pk’l}qk’t)where
k =1,2, . ..~.then

— .

‘IIw = A’m

‘ Let ~r =
()?rk’

be the incidence utrix of the graph of the

exterior normal segments, that is,

‘ M(pk’’~qk”)is terminal point of srt

‘1 ‘f (Pk’’’qk”)
is initial point of srl

( )
O if pk’’>qk” is not on srr (r=l,2, . ..T.

k=l,2, . ..~)
.

(77)

(78)

.

.
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,

and let q“ = (l?k”) be the matrix consisting of the first 7 columns

qrk” =

1 ~ (Pkjqk) h ter’d~ ~oht of sr~

-1 if (pk,qk) is initial point of Sri

[

0 H (Pkjqk) is not on Srl (r=1,2, . ..Tj

k=l,2, . . . 7)

It is a consequence of these definitions that

@ = -Wliq!fi!

and by equation (77)

Qr = clm

where

c’ = -~’’q’A’

(79)

J;

(80)

(81)

(82)

To c-alculate qfi; let the points of the inner normal segments

oriented from the inner normal points to the boundary points be denoted
by (pk’”,qk’”) with k = 1, 2, . . . v+ 7 where the numbering is chosen

SO t~t (pk’’’,q”)”)= (pk,qk) with k = 1, 2, . . .

be the incidence matrix of the inner normal segments

1 if (pk’’’,qk)’)is terminal point of Sr

‘1 if (pk’’’,q”)”)is initial point of sr

() if (Pk’’’>q”)”)is not on sr (r = 1, 2)

( k=l,2, . ..v +7)

where

.00 P;

(83)

and let ~ be the first 7 columns of q. Because of the numbering

. ~ is the matrix defined by equation (2). Also, if A“ = (~~’) is

defined by

.
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.

~kc” = Q %’” - pk)(qr’” - qk)j (84)

where r=l,2) . . . v+7 andk=l,2, . ..y and fir”is
defined by

~11, (= wl’’f,w2”f, , . . Wwyfll)
where

Wk“‘ (=w Pkttl, qkllf)
then by equation (15)

@ = A“m

But by equation (2), equation (83), and the

4i7 = -T&fi’”

and hence, by equation (87),

4i = C“m

where

c“ = -~m”

Since equation (67) holds for arbitrary

C’ + C“ = 17

definition of Ai,

(85)

(86)

(87)

(88)

(89)

(w)

values of m,

(9U

where I iS the ~ X y identity matrix. Thus, C!r may be calc~ted

by equation (82) or from equations (~) and (91).

By equation (81), for given values of %8, equation (72) can be
written

m=q5+C’m (92)

The solution of this equation gives m and consequently W(x,y) which
is U(x,y) on the given region.

“

.
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If this system is to be solved by iteration, let

~(k+l) =m(0) +C,m(k)

(93)

(94)

This system is known to converge at least geometrically and an esti-
mate of the rate of convergence is being investigated.

Outline of Calculations for Neumann Rroblem

The calculations by the present method may be summarized as follows:
First, Cl is calculated; second, the solution m of the system of equa-
tions (g2) is calculated or appro-ted; and, third, m is used to cal-
cukte W on the region by formula (15). The procedure for the calcula-
tion of C* by two methods is given below. The double calculation of
c’ is a check for the correctness of the calculation.

In the first method A! is calculated in the following way. Let
b’ = (brk’) and c’ = (~k’) be definedby

(95)

where bl is the ~ x y matrix, each column of which is a list of the
coordinates of the end points of the exterior normal segments, and

((%’%) (P21%) “ ● “ (P7+J
~1 =

. ..*. ● ..*O ● 0
)

‘\(P@ (P2A2) “ “ “ (P7)~7)/
\ /)
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where c‘ is the
coordinates of the
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~ x 7 matrix, each row of which is a list of the
boundary points. Let a’ be

a’ =bl -c’

Then by equation (74)

Ark’ = CP(EL#)

If ~’ 11 are written by definitions
then calculat~dbyqequation (82).

In the second method for the calculation of

((PI’”>ci~’”) (pi’’’@”) “o”

(
P2

bli= “%’”) (pG’’’’qG’”) “0”

\ ““* ● *” ““”

defined by

(97)

(98)

(78) and (79), C’ is

()Cf, let b“ = brk”

( )P#”@”

\
(99)

. . .

\
(3?7+v’’’’q7)(p7 +v(q7+v’’’’q7+v’”) “ “ “ (P7+V”” ‘“%+V j

where b“ iS the (7 + v) x 7 matrix, each column of which is a list
of the coordinates of the end points of the interior normal segments,
and

Id”””””””””*” I

\ /

(P1’ql) (p2’q4 “ “ “ (w7)

where C!f is (7+v)xy
coordinates of the boundary

is
is

(100)

.

.

—

.

a list of the
defined by

(10>) .

Then by equation (84)

(102)
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If q and ~ are written by equations (2) and (83) then C*’ is

?
calculated by equations (~) and (91), and

Ct = 17 - C“ (103)

A partial check on the calculation of C“ is that the sum of the rows
of C1* is zero. This follows from the remark that equation (69) holds
for arbitrary values of m, if equation (89) is used and appropriate
values of m are chosen. A check on the calculation of C~ by the
first method is that the sum of the elements of each column of C’ is

This is a consequence of applying the preceding remark to equa-
;ion (103). It may be noted that C’ depends only on the geometry of
the region. Thus, after numbering the inner and etierior normal segments
and the end points of these se~nts, C’ is calculated, the solution of
the system of eqyations (92) canbe approximated by iteration (eqs. (93)
and (~)). The desired function is givenby equation (15). To illus-
trate the method, a Neumann problem for the region of figure 2 has been
worked and the details of the calculations are indicated in tables V
to VII.

,

(The estimate of the error used is ~fi -4#k)) where ~t!(k)
.

refers to the kth approximation U(k). If m(k) is the kth approxima-

tion of m, and U(k) = W(k) is computed using equation (15) where
.

m(k) is the kth approximation of U, then by equation (72)

@JJ(k)=m(k) -Q(k)

But by equations (93) and (94)

+6= m(k+l~- cdk)

But by equation (81)

Hence

-(k) (k+l)~fi-4u .=m - m(k)

(1(A)

(105)

(M)

(107)
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COMMENTS ON WORKED EXAMPIES

The purpose of the worked examples is to indicate the details of
the calculations required. It should be noted that the present method
should not be wed for problems of this size; that is, the method is most
useful when the number of inner points is mu@ greater than the number of
boundary points.

The rate of convergence for the Dirichlet problem seems to be great
enough for practical purposes while the rate of convergence for the
Neumann problem would seem to indicate that a modified procedure should
be used. A tentative modification of the integral eqmtion analog has
increased the rate of convergence for the Neumann problem and is being
investigated.

The calculation of the C’ utrix was checked by the calculation
of C!’. This last matrix is not given since its negative differs from
the C’ matrix by only a constant for the diagonal elements.

Since the values of the fundamental solution were taken to four
decimal places, the third decimal pkce is not exact.

The worked example of the Dirichlet problem is for the region indi-
cated in figure 1, and the boundary values are given in column zero of

(table III M(o) = U). The exsmple of the Neumann problem is for the
region In figure 3, and the boundary differences are given in table VI.
Figures 4 and 5 show the rates of convergence for these examples.

—.

.-

—

.

.

Case Institute of Technology,
Cleveland, Ohio, June 18, 1956. —

.

.
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APPENDIX A

GREEN’s IDmrrms

First and Second Identities

The proof of Green~s first and second identities for a finite set of
points given by Courant, Friedrichs, and Lewy (ref. 1) is indicated below
as a convenient way to explain the notation. Let Gl be any set of unit
se~ents and let G, not necessarily a regionl be the end points of these
segments. Let U(x,y) = U(P) be a function defined on G and let W
be defined for a horizontal segment as the value of U at the right end
point minus the value at the left end point and, for a vertical se~ent,
as the value at the upper end point minus the value at the lower end
point. If V(P) is another function defined on G, consider the sum

~v(@+-J(p)]
.

where G below the summation sign means that the sum is to be taken wer
au points of G end R at a boundary point is to be interpreted
according to its definition in the list of symbols. Consider the terms
of the sum associated tith the horizontal segment whose left end point
is P and whose ri@t end yoint is Q. One term arises from each end
point and the terms may be ordered as follows:

v(P) ~(Q) - u(P)] + V(Q)[U(P) - u(Q)] = -P(P) - v(Q)][U(P) - u(Q)]

By a similar relation for the vertical segments

where the sum on the right is to be taken over all the segments of G1.

This is Green’s first identity.

By symmetry U and V can be interchanged on the left to get a
simikr rektion, and the difference of these equations yields Greenrs
second identity

. z[m(u) - m(v)] = o (A2)

G
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If G is a region,
on the inner points of G
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U satisfies the Iaplace difference eqyation
and V s 1; then, equation (A2) becomes

,

.

I R(U) =0

r

which in theA notation is equation (66). Hencej the condition expressed
by this equation is a necessary condition for the existence of a solution
of the Neumann problem.

Also, if G is a region, U satisfies the Laplace difference equa-
tion on the inner points and V = U; then, -eqmtion (Al) becomes in the
A notation,

fit~fi. -~ (bUj’

‘1

If fi=.0 then 8U= O for all segments of ‘1 ●

Eence, U is a con-

stant and since U = 0, B s 0. If 4: = .0 then U is a constant. +—

It is a consequence of these statements tl& the solution of the Dirichlet
problem is unique if it exists and the solution of the Neumann problem is
unique up to a constant if it exists. For finite regions these results

.

are well known. However, if the regularity conditi~n is imposed on the
function at infinity these statements can also be asserted for infinite
regions. This will be proved in the next section by showing that the
above eqyation holds for infinite regions if U is-regular-at

Green~s Third Identity

be a
The proof of Greents third identity is given as follows:
finite region and let V(p,Q) = L(P,Q). Then by eqyation

~ u(Q)%-&(p,Q)j = L(P,Q)R[u(Q)]
I

Qin G Qin G

and since G is the sum of I and I’ (see symbol Mst)

~
U(Q)RQ[L(P, Q)] = WI + W2+ W3

infinity.
—

Let G
(A2)

(A3)

—

.

QinI
.
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●

where

.

WI(P) =
z

L(P,Q)R[U(Q)]

Qin I

W2(P) =
z

L(P,Q)R[u(Qj

Qinr

W3(P) = -
z

U(Q)RQ~(p,QJ

(A4)

(A6)

Qin I’

Therefore, WI(P) may be interpreted as the potential of a mass distri-

bution on I; W2(P) may be interpreted as the potential of a mass dis-
.

tribution on the boundary 17;and W3(P) is the Eotential of a dipole
distribution on the segments of N directed from the boundary to the “
normal points of dipole density -U(Q). By equation (9) the left side
of equation (A3) is zero if P is not in I and U(P) if P is in
I. Thus, for any function U(P) defined on a region G

{

U(P) if P is in I
WI(P) +W2(P) +W3(P) =

o if P is not in I }

This can be stated as follows: Any fumction defined on G can be repre-
sented as the sum of a potential due to a mass distribution on the inner
points, a potential due to a mass distribution on
and a dipole distribution on the normal segments.

Let a function U(P) be defined as harmonic
R[U(P)] = O for all inner points P of G. For
equation (Ak), WI = O and

the boundary points,

on a region G if
such a function, by

--

{

U(P) if P is in I
W2(P) +W3(P) =

1

(A8)
o if Pisnot in I
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For finite
vialedthat

uniformly with
This i6 proved
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regions with finite boundaries equation (A8) holds pro-

respect to e,
by considering

limr%l=O
r-+w

where r and
a sequence of

El are
6qwres

(A9)

polar coordinates.
with center at the

origin whose sides approach infinity. Consider equation (A8) applied to
the part of G in each of these squares. @ equations (A9) and (6) it
is seen that the parts of W2 and W3 computed on the boundary of the

square, which is slightly altered so that the region involved is har-
monic, goes to zero and the theorem is proved. This result may be
strengthened as indicated below.

If r2NJ is uniformly bounded and Mm U = c uniformly with
r+ w

respect to- e, it will be said that U is re@ar at infi~ity. If the
function U = U - c is considered then Mn U = O and U is regular

r+ m
at infinity. Under these hypotheses it can be shown that W2 and W5

on the squares again approach zero and for ~, equation (A8) holds. In
terms of eqmtion (A8) this becomes

I L(P,Q)R[U(Q~~ -
I

U(Q)RQ[L(p,Q)J +

—

●

.

.7

—

.

.—

Qinr QinI’

To evaluate the last term on the left consider a sufficiently large
square modified as above containing I’. L@ the part of G contained
in the square be denoted by G’ and let the boundary of Gt be denoted
by r+r’. If equation (A8) is applied setting U = c,

Jc if P is in interior of G1
Wc + WC! =

1,0 if P is not in interior of G*
.

.
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where

#

wc=- 1 +-JJ(P;Q)

Qin17

Wcf = -
I

CRQL(P,Q)

Qin17

But by equation (A8) applied to the square and its interior

{

cif Pis
Wc’ =

oif Pis

in interior of square

not in interior of square

Eence, if P is in both the interior of G~ and the interior of the
square, Wc =0. Since the square maybe taken as large enough to

.
include any finite point of the interior of G, WC! = O.

Hence, in equation (A1O), the last term on the left side is zero
and equation (A8) for harmonic functions regular at infinity becomes

{

U(P) if P is in I
w@) +W3(P) + c = 1 (All)

o if P is not in I

This formula can be generalized to the case where U is not reti
at infinity. IRrornthe discussion above,

This suggests, as in potential theory, defining

is in I

}

(A12)
is not in I

the nmss of U as

(A13)

Qinl?
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If U can be represented in

u(P)

the form

=ML(P,P’) +U1(P)

where U1(P) is regular at infinity then equation (All) can be shown to

hold. It may be noted that definition (A13) resembles the definition of
flux in potential theory.

If the components of ~ are identical then U is a constant func-
tion and W1 = W2 = O for all values of P. Also, W3(p) Can be inter-

preted as the potential due to a dipole distribution for which all the
components of p equal the same constant, say c. Thenby equation (A8)
such a potential is c on all inner points and zero on all other points.
Thus, by equation (40) the sum of the coluinnsof C must be zero.

A sh’cEl.arsmalysis of the Green’s identities for infinite regions
applied to simple-layer potentials shows that condition (68) guarantees
the validity of Green’s identities f~r functions represented by simple-
layer potentials.

.
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By

APPENDIX B

HOMOGENEOUS INTEGRAL-EQUATIONANALOG FOR NEUMANN PROBLEM

The homogeneous
setting AiU = O

equation (68) and
-.. .

system corresponding to eqmtion (72) is obtained
in equation (72); that is,

&ti=m (Bl)

the discussion of appendix A W is regular at
Znrlnlty and its value at infinity is zero. Thus, for finite and infi-
nite values of G, Green~s identity gives

.

(B2)

But by equations (67) and (Bl)

.
4{=0

. Hence, by equatton (B2) ~W = O and W is a constant on G. Now on
the set consisting of boundary points of G or the points of the com-
plement of G, W is harmonic. Since the set of boundary points of
the above set is also the set of boundary points 17 of G and since
W is constant on P, it follows that W is constant on the complement
of G. But the point at infinity is in one of these regions and W is
zero at this point. Hence, W is identically zero. Hence, ~fi . 0
and m = O. Thus the homogeneous integral analog system for the Neummn
problem has only the trivial solution and the existence of a unique solu-
tion for the system of eqmtion (72) is proved.
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APPENDIX c

HOMOGENEWS INTEGRAL-EQUATIONANALOG

,

.

FOR DIRICKLET PROBLEM

The homogeneous integral-equationanalog for the Dirichlet problem
is given as follows: In order to prove the,existence and uniqueness of
the system of equations (33) or (%) it suffices to prove that the system
of equations

M=-W (cl)

obtained by setting 6 = O has only the trivial solution.

As a preliminary step a representation of the harmonic extension
of W will be derived. Let V be that solution of the Laplace dif-
ference equation on G for which the boundary values V of V are

T =M (C2)

By eqyation (A8)
.

I I { 1V(P) for P in I
L(P,Q)R~V(Q)] - v(Q)~[:(p,Q)l = o (C3) -

for P in r
Qinr’ Qin I’

It is a consequence of eqyations (C!2)and (23) that

W(P) = -
I

V(Q)RQ[L(P,Q)] (C4)

Qin I’

If H(P) is definedby

H(P) =
I

L(P,Q)RIV(Qfl

Qinr’

then H(P) is harmonic in G, and

[

v(P) - H(P) for P in I
w(P) =

1
[V(P) - H(P)] - V(P) for P in 17

(C5) -

(c6) -

.
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.

Also, since
. I

Qinr
zero at infinity.

Fran equations

37

R[V(Q)] =0, E(P) is regular at infinity and is

(36) and (C2)

[

U(P) for P in I
w(P) =.

u(P) -
}

V(P) for P in r

Comparison with equation (c6) yields

U(P) =V(P) - H(P)

for all points P in G.

where

But

If ti= O then by equation (C8)

m(@‘R~(%)] ‘%vk

‘(Qk)=%Vk+ ‘evk

Hence

(C7)

(c8)

(C9)

(Clo)

(Cll)

By reasoning similar to that of the preceding section V is identically
zero and hence M is zero. This canpletes the proof of the existence
and uniqueness of the solution of the integral-equation analog for the
Dirichlet problem.

.

.
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APPENDIX D

CLASSICAL POTENTIAL

Since the theory in this paper is an

THEORY

analog of classical potential
theory, a brief sket&h of this-subject and.the reduction of the Neumann
and Dirichlet problems to integral equations is given here. All regions
mentioned below are assumed to be at least as regular as is required for
the following statements to hold.

If r is the distance from a given point to a unit positive elec-
trical point charge, the value of the potential of the charge at the
given point is l/r in suitable units. This potential function is a
solution of the fiplace partial-differential e~uation

a2F a2F+#F_0
—+—
~x2 ay2 az2

in any region not containing the charge. If S is a
charge density ml(x~Y>z) is defined on the surface,

tial HI of this charge distribution is

, Pf’ m,(~,~,~)

.

surface and if a .
then the”poten-

Hl(x,y,z) =
J

A dA
s

(x-g) 2+(y-q)2+(z-; )2

The potential HI is also a solution of the Laplace differential
equation in any regular region not containing S smd is called a simple-
layer potential. This can be verified by direct substitution if the
derivatives are calculated by inverting the _orderof differentiation and
integration. It is a central theorem of classical potential theory that
any solution of the Iapl.aceequation in a region can be represented as a
simple-layer potential.

If two numerically equal charges of opposite sign are brought together
along a fixed line and the magnitudes of the charges are varied so that the
product of the numerical value of the charges and the distance between ”them
is held fixed, then the limit of the potential obtained by letting the dis-
tance between the charges go to zero is called the potential of a di ole
oriented along the given line and has the form a(l/r)/k, where afin
denotes differentiation alon&”the given line: This element is called a
dipole and is also a solution of the Laplace differential equation. AS
above, if a dipole density m2 is defined on S, the potential

—

—

.
.
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where

r x-g)z+(y -~)a+(z-g)z

and ~/~n denotes differentiation along the normal to S, is also a
solution of La@ace’s differential equation in any regular region not
containing S. It can be shown that any solution of the Laplace eqw-
tion can be represented, up to an additive constant, by H2, that is,

by a dipole or double-layer potential..

The Dirichlet or first boundary-value problem of potential theory
consists of finding a solution of Iaplace’s equation in a region which
assumes given values on the boundary of the region. The second problem
is to find a solution in the region in which the normal derivative on
the boundary is a given function. The first problem can be reduced to
the problem of determining a dipole density on the boundary whose poten-
tial is the desired function; the second problem can be formulated as

● , the problem of determining a charge density on the boundary whose poten-
tial is the desired function. In either case an integral equation for
the dipole or charge density can be derived by using either the”discon-

. tinuity of a dipole distribution on the boundary or the discontinuity of
the normal derivative of a simple-hyer potential on the boundary.

For the Laplace equation in two dimensions the physical interpreta-
tion is not so straightforward,but by analog with the three-dimensional

case a ‘tcharge” is considered tiose potential is loge = * where r is

the distance between the charge and the point at which the potential is
being evaluated. Dipoles are as defined previously, but instead of con-
sidering distributions on surfaces, distributions on cmves are consid-
ered. All the other statements for the three-dimensional case hold for
the two-dtiensional case. Thus the potentials of a charge and the dipole
distributions, respectively, are

H1(X>Y) =J m-@d@3e $ ds
c

H2(x,y) =
I ()

~ loge : ds%(~,v)an
c
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,

where r = ~x- ~)2+ (y- ~)z, a/an indi~ates”differentiationalong
the normal to the curve C, and ds is the element of arc length on C.
If the limit from the interior of a region is denoted by the subscript i “
and the limit from the exterior by the subsciipt e, the discontinuity of
a double-layer potential on the boundary of a given region can be expressed
by

H2i(x,y) =H2(X,Y) + fiI@%Y)

H2e(x,y) =H2(x,y) - fim2(x,y)
——

where (x,y) is a point on the boundary. For a shple-layer potential if,
at a fixed boundary point (~,yo), differentiation in the direction of

this normal is denoted by ?)/an then

where C Is the boundary of the given region.

In order to solve the Dirichlet problemby representing the solution
as a double-layer potential, it is noted that ~i(x,y) must coincide with
the given boundary value of the desired function. Substituting for H2

its representation in terms of m2 yields

where F(s) is the given value of the desired function at the point on
the boundary curve C, x = x(s), and y =—y(s). If the substitutions
are carried out, a linear integral eqyation for m2 is obtained. The

exterior problem leads to a similar equation if the second discontinuity
condition for a double-layerpotential is used.

For the inner Neumann problem it is noted that EL&5)isgi.en -

an
if the solution is regarded as represented by a simple-layer potential

.

●

•!
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.

and, hence, the first discontinuity condition for the normal derivative
of a simple-layer potential beccmes an integral equation for the “charge.
density.” Sufficient conditions which ensure the existence and uniqueness
of the solutions of these problems as wdl as the proofs of the above
statements can be found in reference 6. The outer problem can be solved
by using the second condition.

The potential theoretical apprmch to the Newnn and Dirichlet
problems may be summarized in the following way. The given problem con-
sists of finding a function which satisfies the Laplace equation on a
region and, in the case of the Dirichlet problem, assumes given values
on the boundary of the region or, in the case of the Neumann problem,
has a normal derivative on the boundary which assumes prescribed values
on the boundary. In either case the umlmown function is regarded as the
potential of a simple- or double-layer charge density on the boundary
which satisfies a certain integral equation. Thus the original problem
is reduced to the problem of solving an integral equation for the charge
density. Gnce the charge density is lumwn, the potential, which is the
desired function, can be ccmputed directly.

The methods given in this paper for handling the corresponding prob-
lems for the Iaplace difference equation are analogs of the above methods..

.

.

.
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TABLE II.- MATRICES FOR DIRICHLET PROBIEM

Inner
normal
segments

Normal points

3 5 6 81 2 4 7 9 10

1

;
4

‘2
7
8
9

10
11
12
13
14

-1

-1

-1
-1

-1

-1
-1

-1
-1

-1
-1

-1
-1

-1 .

.
(b) q matrix

‘=1‘hsegments 1 2 3

Normal points

5 6 7 8 9 10 11 12 13 14

1
1

1
1

1
1

1
1

1
1

111111
2 1

1

1

7
8
9

10
11
12
13
14 .

.
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TABLE II.- MATRICES FOR D~TCHLET’ PROBIZM - Continued

(c) a matrix

;Ow

1

1 0,0
2 1,0
3 2,C
4 3,0
5 4,1
6 4,2
7 4,3
8 3,4
9 2,4
10 1,4
11 0,4
12 1,3
13 1,1
14 1,1

Col Uml

2 3 4 5 6 7

1,02,0 3,0 4,1 4,2 4,3
0,0 1,0 2,0 3,1 3,2 3,3
1,0 0,0 1,0 2,1 2,2 2,3
2,0 1,0 0>0 1,1 1)2 1,3
3,1 2,1 1,1 0,0 0,1 0,2
3,2 2,2 1,2 0,1 0,0 0,1
3,3 2,3 1,3 0,2 0,1 0,0
2,4 1,4 0,4 1,3 1,2 1,1
1,4 0,4 1,4 2,3 2>2 2,1
0,4 1,4 2,4 3,3 3,2 3,1
1,4 2,4 3,4 4,3 4,2 4,1
2,3 3>3 4>3 ‘5>2 5>1 5>0
2,2 3,2 4,2 5,1 3,0 5jl
2,1 3,1 4,1 5,0 5,1 5,2

13 14

1,2 1,1

2,2 2,1
3,2 3,1
4,2 4,1
5,1 5,0
5,0 5,1
5,1 5,2
4,2 4,3
3,2 3,3
2,2 2,3
1,2 1,3
0,1 0,2
0,0 0,1
0,1 0,0

~10 11 12

“1,4 0,4 1,3
0,4 1,4 2,3
1,4 2,4 3,3
2,4 3,4 4,3
3,3 4,3 5,2
~3,2 4,2 5,1
3,1 4,1 5,0
2,0 3,0 4,1
1,0 2,0 3,1
0>0 1,0 2,1
1,0 0,0 1,1

‘2,1 1,1 0,0
2,2 1,2 0,1
2,3 1,3 0,2

8 9

3,4
2,4
1,4
0,4
1,3
1,2
1,1
O,c
1,0

2,4
1,4
0,4
1,4
2,3
2,2
2,1
1,0
0,0
1,0
2,0
3,1
3,2
3,3

2,0

3,0
4,1
4,2
4,3

(d) b matrix

Etow
column

2

1,1
0,1
1,1
2,1
3,0
3,1
3,2
2,3
1,3
0,3
1,3
2,2
2,1
2,0

4 6 8 91

0,1
1,1
2,1
3,1

:;:
4,2
3,3
2,3
1,3
0,3
1,2
1,1
1,0

3 7 10

1
2

:

5
6

i
9

10
U
12
13
14

2,1
1,1
0,1
1,1
2,0
2,1
2,2
1,3
0,3
1,3
2,3
3,2
;;;

3,1
2,1
1,1
0,1
1,0
1,1

1,2
0,3
1,3
2,3
3,3
4,2
4,1
4,0

3,2
2>2
1,2
0,2
1,1
1,0
1,1
0,2
1,2
2,2
3,2
4,1
4,0
4,1

3,3
2,3
1,3
0,3
1,2
1,1
1,0
0,1
1,1
2,1
3,1
4,0
4,1
4,2

2,3
1,3
0,3
1,3
2,2
2,1
2,0
1,1
0,1
1,1
2,1
3,0
3,1
3,2

1,3
0,3
1,3
2,3
3,2
3,1
3,0
2,1
1,1
0,1
1,1
2,0
2,1
2,2

0,3
1,3
2,3
3,3

:;:
4,0
3,1
2,1
1,1
0,1
1,0
1,1
1,2

092
1,2
2,2
3,2

:;:
4,1
3,2
2,2
1,2
0,2
1,1
1,0
1,2
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(a) A mtzlx

—

tow

—

1

2

i

5
6

i

9
10
11
12
13
lk
—

1 I 2 I 3 4 5

CdLu

7 %T- d6

I 0.2502 O.%*
.W 0
.3634 2J3$ 0

.2y30

.4503 .am
J&4 .4M4 .*
.49% .4622 .424b
.415CI M&l .4622

.5JM .4%3 .49*

.4953 .4824 .4770

.W .4770 A&&

.4770 .4824

.4W A&?& .W1

.X6 .4522

.m93 .* -w

.45a3

.%34

.2500

.3183

.30S6

.44CA

.k~

.4824

.4gm

.5140

.5140

.J@02

.4-W

.4824

:%
.31B3

.?WJ

.3634

.4404

.4622

.W1

.5140

.553

.51.63

.5=

O.k*o
.4622
.4244

.x=

.m
o

.-

.%=

:?=
J@
.5163

.51S

.5163

O.!mo
.Mi31
.4622

:%
.-

0

.X33
+%6

:%

.5=

.X63

.52331
O:psl o.Jt*

.48*
.48A .4770
.k~ .4824
.4404 .4622

.3866 A&

.31t33
o .2X4
.2ym o

.X@+ :=

.4733

.4&4 .4404

.4$40 .4622

.5140 .4531

).4824 0.47-70
.4770 .4a24
J&b A%*O
.l@3
.4W .5M0
.4622 Jw&

:%!$ .4303
,qm .3634
J .~ca
.25C0 o

J@& .31B3

,4622 :% u
O:y= o:& o.31a3

.%
.W1 .4622 .4W+
.5140 M& .4’024

.%53 .5U9

.5163 .52 .9163

~~ :&, :#,

.% .4244 .4622

.31i33 .* .44CA
o .@lI .3634
.2XKI o

.36* .- 0

.2ym

1

(f) B mtrix

column 1

112 3 4

0.44U4

.386

.3183

.2500

.am

.3m3
-Y=
.4343
.4404
.462?
.M!al.
J+*

:!%

5

Lw&

:T%
.3183

:%
.3634

:E
.4522

:$%
.4&241

6

O.wsl
..46?2
.4404
.4303

,W
.31s3

:%

.X3

.XK6

.44CA

:Jg

.4$63T
7 8

o:M?& 0.44C4
.km

.4503

.4404 :%4

.4244 J+@

.5+% .4404
-3@+ .4303
.3X33 .X6

.=m .3103

.3183 .502

;g %J

.4244r4!Jo;~
.4.eal .4622
.456-0 A&k
.4824 .lb~o
.4’770 .4824
.4404 .462?
.yw .4234

.Nf33 .=

.- .36*

.m .3183

.31B3 .a

.5%s .31B3

0.Z500 o.3183
.31133 .2yJo
.3W .3183

.*
:% .4503

.4404
:% .4622

A-@
.4622 A404

o:@&

.a

:El.%
.JK444

YJ
.4-622
.44CA
.4303

AMA .4m3
.4503 .4404

.3866 .42VI

.*3 .3=

.Zm .W!4
ii1

. . 1
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, .

(g) C nutrix

1

‘O”l-T-FIT

I
1 O.aoc
2 .(%93
j .0232

4 .Olln

5 -.@
6 -.Ol~

~ -.ol.ec

8-.0239
9-.0339
10 -.&al
I.1-.0467
12 -.@?il
13-.0683
111.-.0683

O.fxw
.,zpc
.069:
.023:
-.0101
-.OW
-.~~
-.033E
-.04X
-.046i
-.04K
-.03m
-.037E
-.0232L

0.0232o.oum
.0683 .023Z
.am .068:
.0683 .aoc
-.0232-.@:
::;;: -.068:

-“%-.ckm -.
..0457-.04.X
-.0420..03y
-,03X -.oa$
-.0259-.olec
-.om -.o13t
-.0101-J@

-0.042+2
- .Cp38

-.(%83
-.I%83

:0%
.0232

-.0101

-.023.8
-.0259
-.039
-.0293
-.0339
-.0359

column

I I I I I
6 I 7

1
0.03M -0.0259
-,03@ -.0239
-.0378 -.021a
-.0232-.0101
.0683 ,0232
.@xl .m3
.c6a3 .2500
-.0252-.0583
-.0378-.aS33
-.0373;:$g
-.0338
-.0339 -.0359
-.0359-.0339
-.0339 -!0293

Q--L-
.O.ozyz
-,03y3
-.04a
-.0$68
-.0!33E
-.&83
-S@

.&m

.rw;

.0232

-::mg

-.@167
-.0420
..0378
-.0378
-.0232
.0683
.~ccl
.c@3

.Olm .0232
-.0054 -.0101
-.0136 -.021.8
-.0180 -.0259

10 u

-0.0420.0.0467
-.M67 -.0420
-.okm -.0338
-.0338-.m9
-.0239 -.ol@a
-,0218-.o136
-.0101-.(X134
,0232 .0101
.0s83 .0232
.@Q .0683
.0683 .gxcl
-.0232-.C693
-.0378-.0683
-.0378 -.059

12 13

0.o1o1-0.0232
-.0218 -.037&!
-.0B9 -.037e
-.059 -.033$
-.0293 -.0335
-.0339 -.0355
-.0359 -.0335
-.ckxl -.035$
-.0538 -.03@
-.0683 -.03@
-.0683 -.og2
.2500 .@35
.0683 .@c
.0232 .~~

14

-0. &183
..Mi83
-.059
-.dlm
-.0359
-.0339
-.0293

-.m9
-.m9
-.cela
-. Ola

.0232

.06433

.~oo
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TABLEIII.- APPROXIMATEVALUESOF M FCR DIRICHIETPROBLEM

I f
Iterationnumber

10

1.705
2.497

-2.99$1
-2.701
4.397
1.201
-5.0%
2. 6$)4
3.15K5
1.993
-●999
-2.003
-1.106
-3.001

M
3 4 5 6 7 8 9

1.762 1.743 1.‘j’2’j’ 1.717 1.711 1.708 1.706
2.57$J2.547 2.526 2.513 2.5@ 2.501 2.499
-2.884-2.939-2.*7 -2.982-2.991-2.9% -2.997
-2.592-2.647-2.674.2.687-2.694-2.698-2.770
4.574 4.592 4.596 4.59!34.598 4*598 4.597
1.183 1.193 1.198 1.200 1.2m 1.201 1.201
-5.109-5.108-5.104-5.101-5.100-5.099-5.098
2.5S 2.6u 2.653 2.673 2.68k 2.689 2.692
2.999 3.096 3.145 3.171 3.184 3.190 3.194
1.815 1.899 1.944 1.968 1.980 1.987 1.991
-1.122-1.067-1.036-1.018-1.008-10003-1.001
-1.927-1.967-1.986-1.995-2.000-2.001-2.002
-.991-1.052-1.081-1.093-1.101-1.104-1.1(%
-2.884-2.946-2.975-2.99 -2.995-2.998-3.030

0 1 2

1.767
2.613
-2.775
-2.469
;.X)EJ

-5:086
2.344
2.805
1.663
-1.204
-1.844
-.865
-2.748

1.270
2*170
-1.970
-1.520
3:db&

-4.100
1.170
1.580
.900

-1.220
-1.280

-.240
-1.790

1,688
2.586
-2.541
-2.182
4.269
1.083
-4.925
1.961
2.409
1.393
-1.292
-1.669
-.621
-2.452

3
4
5
6

s
10
11
12

-

*-
TABLEIv.- E13ROROF APPROXIMATESOLWIIIONFOR DIRICELI?TPROBL@

tTT-
Iterationnumber

7[8 9 10

0.4180.080-0.006
.416 .028 -.034
-.571-.233 -.109
-.662-.286 -.123

● 909 .23$1 .065
.243 .07’3 .027

-.825 -.161 -.023
● 791 ● 383 ,180
.82$I .35% .194
.493 .270 .152

-.072 .088 .082
-.589 -.175 -.083
-.381 -.244 -.126
-.662 -.297 -.135

.O.CQ6
-.007
-.008
-.037
0
.001
●001
.01.1
.013
.013
.010

-.(X)4
-.006
-.006

-0.003
-.004
-.004
-.004
0
0

.001

.0.019
-.032
-.055
-.(36
.o18
.011
.002
.086

-0.015
-.021
-.029
-.027
.00-5
.034
.004
.042
.049
.045
.032
-.019
-.029
-.029

,0.o1o
-.013
-.015
-.013
.001
.002
.003
.Oa
.025
.024
.01J3
-,009
-.014
-.014

.0.002
-.CQ2
-.002
-.002
0
0
0

.003

.004

.004

.003
-.001
-.001
-.001

.0.OQ1
-.001
-.001
-.001
0
0
0
.001
.m2
.002
.001

0
-.001
-.001

.005

.007.097
.084 .007

●W
-.C02
-.003
-.a33

.054
-.040
-.061
-.062

a ~fk+l) i. error of kth approximation.
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(.] ~1 WI ~“ matrix

2

1
1

BY&rim-mrml Beewmta

1

1
1

5

a

1

t?5

1

1

L7

.1

1

2

1

1

1

!1

1

2

.1

1

6

.1

1

8

1

1

9

1

1

0

L

1

3

1

1

i

1

1

2

1.

1

!3

i

6

1

1

7

.1

1
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TABLE V.- MAZRICES FOR NEUMANN PROBLEM - Continued

(b) (~’’q’)t matrix

End points
of exterior

Iormal segments

1

2

;
5
6

;
9
10
11
12
13
14
15–.
16
17
18
19
20
21
22
23’.
24
25
26
27
28
29

;:
32

1

3
-1

-1
-1

2
—

-1
3
-1

-1

—

—

3
—

-1
3

-1

-1

—

—

4
—

-1
3

-1
-1

—

5

3
-1

-1
-1

Boundary points
—

6
—

-1
3
-1

-1

—

—

7
—

-1
3

-1
-1

—

—

8
—

3
-1

-1
-1

—

—

9
—

-1
3

-1

-1

—

10

-1
3

-1

-1

—

11
—

-1
3

-1
-1

—

3
-1

-1
-1

13

-1
3

-1

-1

14

-1
3

-1

-1

.

.
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TABLE V.- MATRICES FOR NEUMANN PROBIZM - Continued

(c) a’ matrix

Row

1

;
4
3
6

i
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29

g
32

column

4 61 2 3 5 7 8 9 10 l-l 12 13

4,1
3,1
2,1
1,1
0,0
0,1
0,2
1,3
2,3
3,3
4,3
5,2
5,1
5,0
5,1
4,2
3,2
2,2
1,2
0,1
1,0
1,1
1,2
0,3
1,4
2,4
3,4
4,4
5,3
6,2
6,1
6,0

4,2
3,2
2,2
1,2

0,1
0,0
0,1
1,2
2,2

3,2
4,2

5,1
5,0
5,1
;$

3;3
2,3
1,3
0,2
1,1

1,0
1,1

0,2
1,3
2,3
3,3
4,3
5,2
6,1
6,0
6,1

4,3
3,3
2,3
1,3
0,2
0,1
0,0
1,1
2,1

3,1
4,1
5,0
5,1
5,2
5,3
4,4
3,4
2,4
1,4
0,3
1,2
1,1
1,0
0,1
1,2
2,2
3,2
4,2
;,;

6;1
6,2

:,;

1;4
0,4
1,3
1,2
1,1
0,0
1,0

2,0

3,0
4,1
4,2
4,3
4,4
3,5
2,5
1,5
0,5
1,4
2,3
2,2
2,1
1,0
0,1
1,1
2,1
3,1
4,0
5,1
5,2
5,3

2,4
1,4
0,4
1,4
2,3
2,2
2,1
1,0
0,0
1,0
2,0

3,1
3,2
3,3
3,4
2,5
1,5
0,5
1,5
2,4
3,3
3,2
3,1
2,0
1,1
0,1
1,1
2,1
3,0
4,1
4,2
4,3

1,4
0,4
1,4
2,4
3,3
3,2
3,1
2,0
1,0
0,0
1,0
2,1

2,2
2,3
2,4
1,5
0,5
1,5
2,5
3,4
4,3
4,2
4,1
3,0
2,1
1,1
0,1
1,1
2>0
3,1
3,2
3,3

0,4
1,4
2,4
3,4
4,3

:;:
3,0
2,0
1,0
0,0
1,1
1,2
1,3
1,4
0,5
1,5
2,5
3,5
4,4
5,3
5,2
;,;

3;1
2,1
1,1
0,1
1,0
2,1
2,2
2,3

0,0
1,0
2,0
3,0
4,1

g
3,4
2,4
1, k
0,4
1,3
1,2
1,1
1,0
0,1
1,1
2,1
3,1
4,0
5,1
5,2
5,3
4,4
3,5
2,5
1,5
0,5
1,4
2,3
2,2
2,1

1,0
0,0
1,0
2,0
3,1
3,2
3,3
2,k
1,4
0,4
1,4
2,3
2,2
2,1
2,0
1,1
0,1
1,1

2,1

3,0
4,1
4,2
4,3
3,4
2,5
1,5
0,5
1,5
2,4
3,3
3,2
3,1

2,0
1,0

0,0
1,0
2,1
2,2
2,3
1,4
0,4
1,4
2,4
3,3
3,2
3,1
3,0
2,1
1,1
0,1
1,1
2,0
3,1
3,2
3,3
2,4
1,5
0,5
1,5
2,5
3,4
4,3
4,2
4,1

3,0
2,0
1,0
0)0
1,1
1,2
1,3
0,4
1,4
2,4
3,4
4,3
4,2

:;;
3,1
2,1
1,1
0,1
1,0
2,1
2,2
2,3
1,4
0,5
1,5
2,5
3,5
4,4
5,3
5,2
5,1

1,3
2,3
3,3
4,3
5,2
5,1
5,0
4,1
3,1
2,1
1,1
0,0
0,1
0;2
0,3
1,4
2,4
3,4
4,4
5,3
6,2

2$
5,1
4,2
3,2
2,2
1,2

0,1
1,0
1,1

1,2

1,2
2,2
3,2
4,2
5,1
5,0
5,1
4,2
3,2
2,2
1,2
0,1
0,0
0,1
0,2
1,3
2,3
3,3
4,3
5,2
6,1
6,0
6,1
5,2
4,3
3,3
2,3
1,3
0,2
1,1
1,0
2,1

1,1
2,1
3,1
4,1
5,0
5,1
:,:

3;3
2,3
1,3
0,2
0,1
0,0
0,1
1,2
2,2
3,2
4,2
5,1
6,0
6,1
6,2
5,3
4,4
3,4
2,4
1,4
0,3
1,2
1,1
1,0
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(a) A~ Id,13x

—
a

7

0.5140
.4831
.4622
.Uok
.%34
.W
3
Jm

:%

:%
.5163
.5253
.5382
.5356
.5140
.4*
.4824
.4Y33
.*
.3m
.25W
.Wo
:~

.4622

.45&J

.5165

.*2I

.5444

.55@

m

8“

0.5140
A*
.4824
.47p
.4404

:%%
o

:%%
.k303
.482+
.49a
.5140
.53%
.53s2
.s253
.Z.63

:~

.4244

.5866

.2500

.=503

.3183
:X&

;%

.5382

1

0
.$303
.369
.4503
.4824
.4@l
.5140
.Wa
.4*
.4824
.4770
.4404
.3WS
.3183

:%g

.x66

.4404

.4 0
2.5 3

.X53

.5382

.5335

.5382

.5253

.5163

R&

.4244

.3%6

2

o.@o
o
.Z500
:~%

.4622

.4-581

.4563

.4824

.4770
,4824
A&2
.4244
.3%6
.36?.4
.X83
.23co
.W33
.%6
.4303
.4824

3 4

0A93
.56%
.Zxm
o
.3183
S&

.bm
A&a
.4%.3
.5140
.@o
.49s0
.4824
.4’rp
.4404
.386s
.3183
.*

:*

A@?
.4824
.51.29
.5163
.5=53
.5X2
.5336
.5382
.!=53
.5163

5

O.w
.44C+
.3%6
.X83

o
.25W
.%%
.4404

MJ

.5233

.5163

.5W

.5163
J@

:E
.3%6
.2XQ
.Wo
.X83

:%

.4%0

.pbo

.5336

.5382

:~~

6

0.4560
.4622
A*II

%%
o
.-
;%

.4622
J@3
.5163
.5129
.3163
.%53

R&

.4404

.3634

.283

.=xa

.3M3

.3634

.4404

.4622

.Wal

9 10

0Am? 0.4824
.4770

.47-p A&

.4924

.4622

.4244 , ;E&

:= .%34
o .2300
goJ o

.Z!ao
.4404 .x.%

.4244
:% .4622
.5140 .4$40
.5253 .5163
.5U3

:%
::%& .5Z53

.5140
.4881 .5140
.4622 .4X
.4404 .4824
.3634 .4733
.3183 .%4’6

.3183
:% =&
.IM.5
.4%3 :~%
.482+
.4* .4622
.51ho .4881

O:&
.X40
yg

:g

.2%0
o
.318-3

m
.482+
.5W
.5163
.5253
.5382
.s336
.5582
.5253
.5163
.4T70
.4404

:g

%?J

12 1.3

O.w o.m
.4*

:% .4622
.%0 .4*
.5a3 .5s53
.5163
.x& jig

.4622

.4244
o:%

:=
.ac@ o
.%* .mm

:&? :E%
.4960 .4622
.5140 .4831
.5336 .5140
.5382
.W XJ
.s444
.*Z .5444

:{% :g

.4244

.38% .4W
.%34

:Zo .X83
.3183 .23W
.3%6 .3183

).5634
.2500

)

o.3183

:&&

.5129

.5163

.5253

:?%
.4622
.4404
.569
.-
0

:=%?
.42J.4
.4622
:4960
.X63
.5421
.544k
.5m
.mw
.5336
.5140
.49&
.48*

:%3
.3183
.*

.2W0

.X6

.4244

:%

.48A
A*
.4881

i%

:%?
.3M3

:%%
J&

$%
.5140
.5253
.51.63
.5E9
.5163
.4$40
.4881
.4622

.4622

.W.l

.4560

.5163

.51.29

.5163

.5253

.5M-Q

.5140

.4*

.48A

..5140

:-$?&

..W4
P.

TABu v.-~ = KMblARRIW2- - Canduded

(e) C’ mtrix

Collmm

41 213

).mwl
-.*3
-.0233
-.0101
.04a
.0337

:Z8
.0337
.0421
.0$67
.O1oo
.E33
.C683

J3.0693-o.ti3
-.0683

-:%
-.W3 -%g
.W37
.0379 .0378
JW9 .oa9
.0337 .-
.04a .046’2
.0467 .04a
.CM1 .0337
.ce19 .0=
.0378 .0379
.W4 .0537

cl. 0101
-.0233
-.C683
.~m
.CX83
.0233
.Om
.@67
.0421
.0337
.02%
se
.0337
.*2.-L

o.o@5 O.olm
.0103 .021g
.0233 .0378
.W3 .0684

-.0s3
.:% .7300
-.a233 -:%3
.0537
,Wm .03*
.0259 JY21.9
.0179 .Olm

.0337
:% .036J

.0337

0SU79
.@59
.0379
.C537
-.0233
-J%93
.m
.0693
.0237
.olQa
.WJ5
.C@o
.0337
.0294

0.0239O:WJ

:% $!!
.0467
.Omo .0219
.CQ33 .0378
.0W3 -L&&

-:%!s J-x&l
-.0253
-.o1o1 -.0233
.C@l .0357
.0337 .0379
S@ .0239

O:S!L&t+0:X4.5J0.0537
.0379

.Cw .0337 .0759

.0337 .0239
.02J
.o17

.Oa .@
S&g S&-/ .03&

-.0233 -.o1o1
..693

:Qa!3
-.a?33 .Ola
-.0683 ;%;

-:% .-IW3
.c&3 .mlo

.0378 .0233 -.US93

.otz9 .0100 -.0233

0.6
.03?8
.0219
.0135
.0337
.0%4
.0357
.01%
.oa

J
:%4
AF&

-.C683

D.0693
.c@33
.0103
.W5
.03CQ
.0337
.-
.Olm
.0=59
.0379
.m3’l
-.@33
-.WS3
.7WJ

1 1 1 1 1

.

.
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~ven values d ~~ taken as .(0)are -o.@, -0.46,o.x?, .LC6, 1.48,

0.63, -0.03, -0.64, -0.42, -On, -0.-/8,1.0s, 0.30, a?ld.0.9]

Iteration number

415 6171

-0.5
-pm
-1.1*
2.466
.*

-.233
-.*
-.568
-1.19
-1.lal
1.863

1:5?7T
2 3

-1J63 -l.@
-.979 -;.lg
1.02U
-2.Z% -2~6k7
3.148 ;.6&7
1.152
-.473 -:6%
-1.179 -1.m
-.587 -.548
-1.k~ -1.573
-1.373 -1.451
2.4~ 2.955
2.052 .0%
1.923 2.178

819 13 14

-1.338 -1.363
-1.241 -1.327
1.6a 1.8%
-2.910 -3.104
3.999 *.273
1.301 1.339
-.891 ycg
-1.374
-.486 -:416
-1.655 -1.7C6
-1.465 -1.448
mg 3.6=

-.3.=s
2.354 2.507

-1.%7 -1.359
-l.= -1.449
2.o~ 2.=7
-3.247 -3.353
4.485 4.653
1.* 1.393
-1.1* -1.215
-1.461 -1.48s

-1 .%1 -1.319
-1.493 -1.529
2.409 2.539
-;.4~ -pg

1:412 1:432
-1.2p -1.~
-1.%1 -1.509
-.224 -.170
-L-(-p -1.~~
-1.327 -1.s2
4.19 4.317
-.733 --=%
2.808 2.M6

-l.= -1.%
-1.558 -lsal
2.649 2.743
-3.526 -3.552
;.kx& 5.066
. 1.4TL

-1.235
-.;.g

-3:567
5.132
1.489
-1.334
-1.ml
-.0%
-1.785
-l.@
4.569
-1.013
3.CSJ-

-l.=
-1.613

-::%
5.189
1.507
-1.328
-1.491
-.002
-1.m3
-1.U8
4.6a5
-1.@
3.15

-1.in
-1.623
2.92
-5.573
5.*
1.5s5
-1.317
-L4~
..031
-1.-fao
-1.ca2
4.674
-1.W
3.18s

-1.= -1.3%
-1.511 -::w&
-.I.22-.348 -.283

-1.737 -1.75s
-1.414 -1.371
MT& 4.043

-.619
2.623 2.722

-1.733 -1.’F%
-1.238 -1.1*
4.418 4.50J
-.924 -.955
2.936 3.021

.

8

It.eratlrnmmber

&
1

:
4
5
6
7
8
9
10
u
12
13
14

51617 8191 10 13

0.017 0.023
-.044 -.o~
.U3 .1%

-.m -.056
.lfi .11o
.022 .Oxl

.0.3%
-:aJ

-.7=
.s=
.330

-.2Q3
-g

-A*
-.401
.203
.C@J
.59

-0.=7
-.2U

-:%
.682

[

-0.115
-:yx

-.y51
.489
.094

-.223
-.U8
.039

-.ly3
-.o~
.476

-.l-fl
.a

-0.C62
-.IJ.2

-:%
.%2

-m& -o:% 0.K)9
-.C54

.A5
-.1* -:% -:2
.274 .= :%
.Oy’f .028

-.145 -.109 -.079
-.c52 .0$ -.024
X%9 .@ .C@i

0.026
-:%

-.03
-w
.Ozu

-cm
-.CU2
.049

-.m
.044
.ml

-.07’7
.On

O.oa 0.029
-.231 -.ola

.080
-:% -.015
.077 .a
.019 .018

O.m
-.o14
.69

-.cn7
.W7
.Ola
.0c6
.OKL
.05
.W2
.O*
.a37

-.0s
.0%

).030
-.cilo
.059
-cm
.051
.017
.m.
.014
.033
.003
.0%

.;:

.172
-.241
-.155
-.019
-.240
-.192
.615

-.Li5
.m

-.035 -.0%
-.OU -.008
.059 .@

-.013 -.Ocs
.045 .045
.U1 .123

-.115 -.@f
.C87 .Ofl

-.@l o
.003 .K17
.044 .040

-.002 0
.042 .040
.083 .0s9

A&l -.@la
.050

-.08.2
-.OE
.372

-.184
.l&5

-.0% -.032 -Sal
.018 .035 .042

.234 .188
-:% -:% -.1%
.143 .099—



56

y-axis 11

J4I 11

12, 129
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1

H1 I 1

● 5A-rZl 6

‘--++#-+M-”’--0

Inner point
Normal point (1 to 10; V= 10)
Boundary point (1 to 14; T = 14)
Normal segment (unit length)

(1 to 14; p = 14)

r

*

—

.

Figure 1.- Region showing boundq points, normal points, and inner
normal segments used in calculation of C for Dirichlet problem.,—
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I
1

. i 7

;---M&w’-----
O Boundsry point (1 to 14; y = 14)
O Exterior normal point (15 to 32;

~ Directed exterior normal segment
length) (1 to 32; T= 32)

Figure 2.- Region showing boundary points, exterior
exterior normal segments used in calculation of
problem.

~ = 32)

(unit

normal points, and
C’ for Neumann
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TY- is 11 l-o

._[ 411

12
12 23 Zz

13+4

9 8

IL
9 8

7
21 20 7

——. ——— ——— — ~ x-axis
o

•l Boundary point (1 to 14; y = lb)

A Normal points (1 to 10; v= 10)
~ Inner normal directed from normal to

inner points (1 to 14; ~ = 14)

Figure 3.- Region showfng bo~= Points{,inner normal points, and inner

segments used in calculation of C in Dirichlet problem.
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U9 = 3.19

Correct valu

, .

2.83

0 1 z 3 4 5

Ember d qpmximtion

Figure 4.- Error of successive approximation at ninth boe point. (For
2 to u this is bound for absolute error.)

, 4

6

approxlmationa
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Figure 5.- Maximumerror [(]=~k at boundary for Neuman problem where
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